Effects of fine Particulate Matter (PM_{2.5}) composition on ROS production in alveolar macrophages Micah Olivas*, David Flores*, Anthony Waterston, Kosha Raval, Mandeep Kaur, Alam Hasson, and Laurent Dejean California State University of Fresno, Department of Chemistry, 2555 E. San Ramon Ave, Fresno, CA 93740 #### Introduction # How can we explain the molecular basis of inflammatory responses to fine particulate matter pollution? In recent years, small airborne particulate matter (suspended solid and liquid particles with an aerodynamic diameter less than 2.5 microns; PM_{2.5}) has been identified as a leading cause of respiratory affliction in heavily-polluted regions¹. Despite its pervasive impact on the health of urban communities, the molecular basis of pollutant exposure in the respiratory microenvironment has not been thoroughly characterized. Innate defense mechanisms of the upper respiratory tract are ill-equipped to capture particulate matter (PM) within this size range. It has been suggested that these particles may trigger an acute stress response at the level of the alveolar microenvironment by perturbing local inflammatory features (e.g. alveolar macrophages). **Credit:** National Institutes of Health ### Methods | | Fresno | | Claremont | | |---|---------|---------|-----------|---------| | Parameter | F15 | F46 | C12 | C24 | | Composition | | | | | | Cu(II) (ng/ug PM _{2.5}) | 19.2446 | 85.9092 | 19.6338 | 48.2538 | | 9,10 phenanthrenequinone (ng/ug PM _{2.5}) | 0.2389 | 0.0100 | 0.0000 | 0.2211 | | Collection season | Winter | Winter | Summer | Summer | | Time of collection (hours) | 12 | 12 | 12 | 12 | **Fig 1.** Geography and parameters of filter sampling. Ambient PM_{2.5} samples were collected during the winter months of 2013 and summer months of 2012 in Fresno and Claremont to assess PM saturation during periods which have historically coincided with peak levels of air pollution in each respective city. Samples were characterized for their chemical composition using spectrophotometric and spectrometric techniques in collaboration with Alam Hasson's atmospheric chemistry laboratory. ### Outcomes **Fig 3.** Treatment of NR8383 with PM_{2.5} extracts. Populations of NR8383 (rat alveolar macrophage) cells were treated with filter elutions from four unique sampling campaigns to identify both regional and temporal specificity in the stress potential of pollutants within the alveolar macrophage model. Dichlorofluorescein-dihydrate (DCFH) probe was administered to sense ROS production; DCF flurorescence was recorded using a Biotek Synergy HT single-channel spectrophotometer at 485 ± 20 nm excitation and 528 ± 20 nm emission. Slopes obtained from linear regression of trends in DCF fluorescence were shown to be statistically significant by way of student's t-test (p<0.05). Error bars denote SEM. **Fig 4 (above).** Dose response curves from experimentally-determined atmospheric concentration ranges. Alveolar macrophages were treated with aqueous solutions of 9,10 phenanthrenequinone and $CuSO_4$ to identify ROS production trends in reponse to isolated chemical components of the sampled PM. Each graph represents one experiment with three replicate trials per treatment (n=3), wherein error bars denote SEM. The shaded regions denote the respective absolute concentration ranges of chemicals derived from atmospheric analysis. Fig 5 (right). Comparison of slopes identified above. Linear regression of three experiments each of 9,10 phenanthrenequinone and $CuSO_4$ (n=3) revealed stark differences in the fold change of RFU per absolute concentration of relative treatment. Student's t-test revealed a statistically significant difference between cellular responses to PQ and Cu treatment (p<0.05) within experimentally-identified concentration ranges of either compound. Error bars denote SEM. ## Implications and Future Directions - PM-mediated ROS production in alveolar macrophages varies by location of PM collection, suggesting a variation in the reactivity of chemical constituents within alveolar macrophages - Dose response curves of 9,10 phenanthrenequinone and copper ion suggest a significant difference in alveolar stress capacity of transition metals and quinones within ambient concentrations representing experimental levels of atmospheric chemical abundance - Forthcoming assays will aim to identify the subcellular localization of PM-mediated ROS production upon treatment with selected comounds #### Acknowledgements The author thanks Dr. Laurent Dejean for his patient guidance, Anthony Waterston for his continued commitment to the project, Geil Merana and Clarissa Niino for their work on the project, ASI at Fresno State for their support (2014/2015 Faculty-Sponsored Student Research Award to AW, 2017 Faculty-Sponsored Student Research Award to MO, and for Undergraduate Research Grants to CN, GM, JC, and MO), the NSF for Award #1059994 to AH, and the NIH Bridges to Doctorate Grant #R25-GM115293 #### References **1.** Landreman, A. P., et al. (2008). "A macrophage-based method for the assessment of the reactive oxygen species (ROS) activity of atmospheric particulate matter (PM) and application to routine (daily-24 h) aerosol monitoring studies." Aerosol Science and Technology 42(11): 946-957. **2.** Zorov D. B., et al. (2014), "Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release." Physiol Rev 94(3): 909-50. **3.** Helmke, R. J., et al. (1987). "From growth factor dependence to growth factor responsiveness: the genesis of an alveolar macrophage cell line." In Vitro Cellular & Developmental Biology-Plant 23(8): 567-574.